[团队管理]结对编程引出的话题——企业管理与程序员规划的对话(修改总结稿)

对话来源

在几个有技术积累和一定技术发展深度的公司里面发生了频繁的人员变动,该公司的主要技术领导者是一个顶尖的技术高手,而这种人员变动严重影响了他们的产品研发进度,该怎么办?应该如何处理,这里我提出了一些我的看法供参考。
这其实也是国内绝大多数企业都遇到过的问题,同样也是技术人员频繁跳槽的根源。这篇文字不期望所有的公司都能够有稳定的状况,至少能够让一些曾经迷惑得大家认为还是有技术深度的想做得更好的公司找到一些启示。
 

对话内容

对方问道:

我在CSDN上看到了你一篇文章,是关于结对开发的,我公司现在有C++程序员7 8个,应用开发程序员20多个, 该产品也是比较有发展潜力和相应的技术深度,但是一直有个问题,就是跳得厉害,按说待遇在我们公司所在地来说也不低。
跟你在文章里面说的差不多,就是一年左右就跳,正好熟悉项目了,我再招人又得从头开始。
这种情况如果依靠项目管理,怎么处理比较好?
我想象我这种企业和开发团队情况,在中国应该是相当普遍的,如果能解决这个问题,那么意义就大了。

青润

这的确是国内企业经常遇到的问题,而且非常普遍,解决的确是有解决的办法,但是,这是否能够得到企业管理者的认可和实施却是一个非常大的问题。
我觉得,这应该从两个方面下手,一个是管理层面要做好一些准备和相应的措施,另一方面可以考虑对员工进行发展规划指导.
这个问题的解决需要两方面的互动:

第一、管理层面

我觉得从管理层来说,往往给员工贴心的考虑太少——这也是我最近几年研究的一个内容。
技术出身的管理者可以想想你当年做程序员时候的心情和对待遇的考虑,另外想一下当年大家跳槽的原因和动机。
我觉得管理层的问题可能会需要承担较多的责任,或者说主要责任。
企业的管理者应该给员工以长远发展的规划考虑,我个人认为,甚至适当的时候,企业应该给员工建议,建议他们可以考虑跳槽,或者换个环境工作来提升自己——当然,这个建议不是基于赶走员工的心态来定义的。
这个需要企业对自己的认定程度,说实话,我一直认为你的产品方向是可以具有这种不断提升和吸引程序员留下来继续工作的基础的,我认为如果你的公司存在这样频繁跳槽的现象,有一个方面可能和你们的管理制度或者管理层的规划考虑方面有关系。
这个更进一步的东西也许需要分析一下你们公司目前对员工的薪酬体系,以及对员工的发展规划和相关方向的规定和制度,然后才能给你们更进一步的建议。

第二、员工角度

对于员工来说,我觉得你们这个小团队,可以考虑请外面的人来给员工做做职业规划,时间也不会很长,这样贴心的得到员工的真实想法和考虑,也有利于员工的长期稳定。
这样做可以针对员工的实际情况,和他的家庭以及个人曾经的发展道路进行指导,然后建议他们在什么时间做一些相关的事情。
如果企业能够给员工这样的关怀,我相信员工也会在适当的时候考虑企业的状况,给企业留下余地,而不会转身走人,什么都不考虑。
相信一点:中国的技术人员很少有那种完全不负责任的。
就像我们当年,即使托普给了那样的待遇和环境,在项目中,我们仍然会拼命来完成任务而不计较实际的得失。
这样在员工认为自己有什么状态的情况下,也会和相关的人员进行沟通,为企业赢得稳定和换人的机会,同时对于员工来说,他们也可以在适当的时候得到自己的提高和发展。
你们公司的特点其实是可以给与员工相当高的发展机遇的!!!!
所以,从底层到高层,也许有些人是需要换换环境,而有些人则是因为不了解环境而换了工作。
当然,企业如果做得好,员工在外面的公司得到提高后,也会考虑是否在曾经熟悉的公司有更高级别的位置可以来工作,这样,他还会有回来的想法和机会。这其实也是利用其他公司的平台为自己培养更高级别的技术人员的一种方式。
人员通过流动才能发展起来!!!
而中国的公司往往不考虑员工的发展,所以,很少有人愿意主动回到原来的公司工作,所以才有了好马不吃回头草的说法——其实这种说法是不正确的,但是关键要看企业如何来管理,来帮助员工寻找自己的定位。
其实,帮助员工做到了这一点,员工对企业的感激,不仅仅会表现在工作中的积极性和创造性上,同样也会在将来表现出来。
我将来的公司就会为员工提供相关的建议和指导。甚至适当的时候,我肯定会建议一些员工离开公司寻找新的机会。
良性循环的机制,也是需要逐渐建立的。
我也在寻找和探索建立这种良性循环机制的途径和具体操作办法,只是目前都还在摸索之中。
上面是我现在的看法和想法。

对方问道:

那么如何从项目管理和控制上来预防这些问题呢?比如你提到的结对开发,我觉得就很有道理,只是具体该如何操作? 关键我们的项目有一个特点,就是单一化和长期化

青润

结对开发需要的人数较多,我认为不太适合7,8个人的团队,相反,我建议你们可以考虑我的交换编程方法。然后通过配置管理和相关的机制来实现代码和人员的管理。
如果你有十多个人以上的团队,而且工作任务量和人员对比之间不是很紧张,那么,可以考虑结对编程的方式。
是的,其实人员的发展是需要单一和长期化的。
我成都那个团队到现在也算是比较稳定,其中一点就是因为团队做事情的单一化,也提供了稳定的一个基础。
这需要管理者与程序员之间的交流。
毕竟很多事情我需要作进一步的了解,然后才能给你提供有针对性的建议,比如,你的员工是如何看待你的,另外,这种看法是否很真实。
他们如何定位他们与你之间的关系。
这一点就非常重要,管理者技术做到一定程度,是需要相应的管理措施和手段来支持的,纯粹的技术顶尖并不能决定您的管理就能够做到员工心里。
员工对技术的佩服也未必会到对人的佩服上,而只有让他们体会到企业在关心他们,他们才会真正激发自己的创造力和主动工作的精神。

后话

我目前正在规划我的公司,我相信将来在我的公司里面,我会与所有的技术人员进行交流和沟通,这也是我以往做管理的经验和常规做法,所以,我以前曾经说过,在我的团队中,当有一个弟兄因为某种原因想要离开的时候,这个人总会提前向我打招呼,并提出自己的想法和考虑找我询问意见和建议(这个事情写在以前我的blog文章中,具体哪一篇极不清楚了)。
有人会说,你有那么多时间么?
可以这样说,我将来的公司由于技术研究的深度较深,所以,技术人员的数量在三五年内都不会超过30人,我相信,30人的交流沟通时间还是有的。当然,如果达到了一两百人以上的时候,应该就需要另外一套管理机制了,这个时候,我会考虑建立一种制度或者由相应的人员来收集一些资料,每一个新进入的技术人员都会和我有一个初期的交流,通过制度和具体实施的保障来让大家意识到,说出想法不会受到任何影响。
要知道,悠悠之口,甚于防川,如果不防,对于任何企业和团队的管理者来说都是不可能的,怎么样才是最好的解决方式,大禹治水,疏通代替其父亲一直采用的堵,反而达到了真正解决问题的效果。
我一直采用得都是疏导,而不是拦堵!
我有点想做一个中国软件人件网,不知道大家是否觉得可行?
相关推荐
<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
<p> 欢迎参加英特尔® OpenVINO™工具套件初级课程 !本课程面向零基础学员,将从AI的基本概念开始,介绍人工智能与视觉应用的相关知识,并且帮助您快速理解英特尔® OpenVINO™工具套件的基本概念以及应用场景。整个课程包含了视频的处理,深度学习的相关知识,人工智能应用的推理加速,以及英特尔® OpenVINO™工具套件的Demo演示。通过本课程的学习,将帮助您快速上手计算机视觉的基本知识和英特尔® OpenVINO™ 工具套件的相关概念。 </p> <p> 为保证您顺利收听课程参与测试获取证书,还请您于<strong>电脑端</strong>进行课程收听学习! </p> <p> 为了便于您更好的学习本次课程,推荐您免费<strong>下载英特尔® OpenVINO™工具套件</strong>,下载地址:https://t.csdnimg.cn/yOf5 </p> <p> 收听课程并完成章节测试,可获得本课程<strong>专属定制证书</strong>,还可参与<strong>福利抽奖</strong>,活动详情:https://bss.csdn.net/m/topic/intel_openvino </p> <p> 8月1日-9月30日,学习完成【初级课程】的小伙伴,可以<span style="color:#FF0000;"><strong>免费学习【中级课程】</strong></span>,中级课程免费学习优惠券将在学完初级课程后的7个工作日内发送至您的账户,您可以在:<a href="https://i.csdn.net/#/wallet/coupon">https://i.csdn.net/#/wallet/coupon</a>查询优惠券情况,请大家报名初级课程后尽快学习哦~ </p> <p> <span style="font-size:12px;">请注意:点击报名即表示您确认您已年满18周岁,并且同意CSDN基于商务需求收集并使用您的个人信息,用于注册OpenVINO™工具套件及其课程。CSDN和英特尔会为您定制最新的科学技术和行业信息,将通过邮件或者短信的形式推送给您,您也可以随时取消订阅不再从CSDN或Intel接收此类信息。 查看更多详细信息请点击CSDN“<a href="https://passport.csdn.net/service">用户服务协议</a>”,英特尔“<a href="https://www.intel.cn/content/www/cn/zh/privacy/intel-privacy-notice.html?_ga=2.83783126.1562103805.1560759984-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">隐私声明</a>”和“<a href="https://www.intel.cn/content/www/cn/zh/legal/terms-of-use.html?_ga=2.84823001.1188745750.1560759986-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">使用条款</a>”。</span> </p> <p> <br /> </p>
<p> 课程演示环境:<span>Ubuntu</span> </p> <p> <span> </span> </p> <p> 需要学习<span>Windows</span>系统<span>YOLOv4-tiny</span>的同学请前往《<span>Windows</span>版<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》 <span></span> </p> <p> <span> </span> </p> <p> <span style="color:#E53333;">YOLOv4-tiny</span><span style="color:#E53333;">来了!速度大幅提升!</span><span></span> </p> <p> <span> </span> </p> <p> <span>YOLOv4-tiny</span>在<span>COCO</span>上的性能可达到:<span>40.2% AP50, 371 FPS (GTX 1080 Ti)</span>。相较于<span>YOLOv3-tiny</span>,<span>AP</span>和<span>FPS</span>的性能有巨大提升。并且,<span>YOLOv4-tiny</span>的权重文件只有<span>23MB</span>,适合在移动端、嵌入式设备、边缘计算等设备上部署。<span></span> </p> <p> <span> </span> </p> <p> 本课程将手把手地教大家使用<span>labelImg</span>标注和使用<span>YOLOv4-tiny</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。<span></span> </p> <p> <span> </span> </p> <p> 本课程的<span>YOLOv4-tiny</span>使用<span>AlexAB/darknet</span>,在<span>Ubuntu</span>系统上做项目演示。包括:<span>YOLOv4-tiny</span>的网络结构、安装<span>YOLOv4-tiny</span>、标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计<span>(mAP</span>计算和画出<span>PR</span>曲线<span>)</span>和先验框聚类分析。 <span> </span> </p> <p> <span> </span> </p> <p> 除本课程《<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》外,本人推出了有关<span>YOLOv4</span>目标检测的系列课程。请持续关注该系列的其它视频课程,包括:<span></span> </p> <p> 《<span>YOLOv4</span>目标检测实战:训练自己的数据集》<span></span> </p> <p> 《<span>YOLOv4</span>目标检测实战:人脸口罩佩戴识别》<span></span> </p> <p> 《<span>YOLOv4</span>目标检测实战:中国交通标志识别》<span></span> </p> <p> 《<span>YOLOv4</span>目标检测:原理与源码解析》<span></span> </p> <p> <br /> </p> <p> <br /> </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007061437441198.jpg" /> </p> <img alt="" src="https://img-bss.csdnimg.cn/202007061438066851.jpg" />
<p> 课程演示环境:Windows10  </p> <p> 需要学习<span>Ubuntus</span>系统<span>YOLOv4-tiny</span>的同学请前往《<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》 <span></span> </p> <p> <span> </span> </p> <p> <span style="color:#E53333;">YOLOv4-tiny</span><span style="color:#E53333;">来了!速度大幅提升!</span><span></span> </p> <p> <span> </span> </p> <p> <span>YOLOv4-tiny</span>在<span>COCO</span>上的性能可达到:<span>40.2% AP50, 371 FPS (GTX 1080 Ti)</span>。相较于<span>YOLOv3-tiny</span>,<span>AP</span>和<span>FPS</span>的性能有巨大提升。并且,<span>YOLOv4-tiny</span>的权重文件只有<span>23MB</span>,适合在移动端、嵌入式设备、边缘计算设备上部署。<span></span> </p> <p> <span> </span> </p> <p> 本课程将手把手地教大家使用<span>labelImg</span>标注和使用<span>YOLOv4-tiny</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。<span></span> </p> <p> <span> </span> </p> <p> 本课程的<span>YOLOv4-tiny</span>使用<span>AlexAB/darknet</span>,在<span>Windows10</span>系统上做项目演示。包括:<span>YOLOv4-tiny</span>的网络结构、安装<span>YOLOv4-tiny</span>、标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计<span>(mAP</span>计算<span>)</span>和先验框聚类分析。 <span> </span> </p> <p> <span> </span> </p> <p> 除本课程《<span>Windows</span>版<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》外,本人推出了有关<span>YOLOv4</span>目标检测的系列课程。请持续关注该系列的其它视频课程,包括:<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:训练自己的数据集》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:人脸口罩佩戴识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:中国交通标志识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测:原理与源码解析》<span></span> </p> <p> <span> <img alt="" src="https://img-bss.csdnimg.cn/202007061503586145.jpg" /></span> </p> <p> <span><img alt="" src="https://img-bss.csdnimg.cn/202007061504169339.jpg" /><br /> </span> </p>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页